

Engineering Fundamentals Stormwater Pipe Design Introduction

Copyright 2024 Quilty Hub Pty Ltd All rights reserved.

Local Standards and Guidelines

- Queensland Urban Drainage Manual (QUDM).
- Austroads Guide to Road Design Part 5A.

Source: Institute of Public Works Engineering Australasia, Queensland 2017

Source: Austroads Ltd., 2023

Piped Network Elements

- Drainage inlets
- Access chambers
- Underground pipes
- Outlets

Drainage Inlets

- Capture surface runoff.
- Control flooded limits (width, depth, depth*velocity product).
- Redirect flows underground into pipe network.

Access Chambers

- Provide access for maintenance.
- Changes of direction, grade, level.
- At pipe junctions.

Pipes

)))ilt\/

ENGINEERING HUB

- Convey captured runoff from inlets.
- Multiple pipes interconnected within a system.
- Can be single reaches too.
- Gravity system that discharges to:
 - Detention basin.
 - Bioretention system.
 - Rainwater haversting tank.
 - Existing pit.
 - Headwall outlet.

Outlets

- Allows piped network to discharge captured stormwater.
- Headwalls provide a stable, controlled point of discharge.

Terminology

ENGINEERING HUB

- Pipe length measured to centre of pit for design purposes.
- Pipe cover measured vertically from surface level to crown.
- Pipe slope, S_o (do not confuse with friction slope, S_f)
- Invert: Lowest point inside pipe.
- Obvert: Highest point inside pipe.
- Crown: Highest point outside of pipe.
- Pit drop: Required to ensure free draining through pit.

Pressure Head

- The force that water exerts due to the weight of water above it.
- Affects flow rate How quickly water flows through the pipes.
- The greater the pressure head, the faster the water flows.

Hydraulic Grade Line (HGL)

- HGL represents pressure head in a pipeline.
- Pressure head at any point along HGL is the vertical distance below that point.
- Think of it as the 'effective water level'.
- Flow velocity is a function of HGL not pipe grade, S_o.

Hydraulic Grade Line (HGL)

Losses due to pipe friction.

 $h_f = S_f L$

h_f Head loss in pipe due to friction (m)
S_f Friction slope (m/m)
L Length of pipe reach (m)

Friction slope is not the same as the pipe slope!

Ouilty ENGINEERING HUB

Hydraulic Grade Line (HGL)

Losses due to junctions, structures, bends, obstructions.

 $h_s = K \frac{{V_o}^2}{2g}$

- h_s Head loss at obstruction, bend, junction (m)
- K Pressure change coefficient
 - (Structure loss coefficient)
- V_o Velocity of flow in downstream pipe (m/s)
- g Gravitational acceleration (9.81m/s²)

ENGINEERING HUB

Total Energy Line (TEL)

• Total Energy Line (TEL) is above HGL by a difference equal to the velocity head under steady flow conditions.

$$Velocity \ head = \frac{V_o^2}{2g}$$

- Represents total energy available to flow.
- HGL and TEL coincide where velocities are negligible e.g. within a pond.

Water Surface Elevation (WSE)

- Water service elevation (WSE) within a pit is typically higher than theoretical HGL.
- Different structure loss coefficients are used:
 - K_u Junction pit pressure change coefficient
 - K_w WSE change coefficient
- 150 mm freeboard must be allowed above the WSE.

Hydraulic Calculations

Three (3) models for hydraulic systems:

- Simple, steady flow, open channel model
- Steady flow, pressured grade line model
- Complex, unsteady flow model

Steady flow = discharge remains constant through each link

HGL Open Channel Model

- Assumes steady flow in each section.
- HGL set at pipe obvert.
- Calculated HGL upstream of each pipe matches or is slightly lower than upstream obvert.
- Design flow determined by the Rational Method.
- Series of connected open channels.
- System flows full but not under pressure.

HGL Open Channel Model

• Manning's Equation used

$$V = \frac{1}{n} R^{2/3} S^{1/2}$$

• Volumetric Flow Rate Equation used

Q = VA

• Pipes treated as open channels with pipe flowing full (simplified)

Tip: R = A/P

And for a circle $A = \pi r^2$, $P = \pi 2r = \pi \emptyset$ Then, $R = \frac{\pi r^2}{\pi 2r} = \frac{r}{2} = \frac{\emptyset}{4}$ So, $V = \frac{1}{n} \frac{\emptyset^{2/3}}{4} S^{1/2}$

HGL Pressurised Grade Line Model

- Assumes steady flow in each pipe.
- Hydraulic Grade Line (HGL) is above pipe obverts, indicating pressure flows.
- Allows for pressure changes and energy losses in pits.
- Offers higher velocity of flow through pipes.
- Offers flexibility in choosing pipe slopes.
- Potentially leads to more efficient designs compared to the Open Channel Model.

HGL Pressurised Grade Line Model

• Colebrook-White Equation used

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{k}{3.7D} + \frac{2.51}{R_e\sqrt{f}}\right)$$

- More variables to consider:
 - Friction factor, f
 - Reynold's Number, R_e
 - Understanding of turbulent vs laminar flows
- Iterative equation Moody Diagram can help!

HGL Unsteady Flow Model

- Dependent on time, unlike steady flow models.
- Water levels fluctuate during design storm event.
- Requires computer program for analysis.
- Less frequently used for pit and pipe design.

Open channel model = use for concepts, quick calculations

Hydraulic Calculations

Three (3) models for hydraulic systems:

- Simple, steady flow, open channel model
- Steady flow, pressured grade line model
- Complex, unsteady flow model

- Essential for backwater analysis.
- Determine downstream HGL, work upstream through piped network.
- Designer's decision can influence design and ultimately performance of built infrastructure.
- Coordination with regulating authority for consensus on starting HGL.

Starting HGL depends on relationship between:

- Calculated tailwater (TWL) in receiving waters
- Critical depth (d_c) of flow in outfall pipe
- Obvert level (OL) of the pipe.

- If tailwater is above pipe obvert level, then starting hydraulic grade line is set to the tailwater level.
- TWL > OL, HGL = TWL

- If tailwater is below pipe obvert level and above critical depth, then starting hydraulic grade line is set to the pipe obvert level.
- TWL < OB and TWL > d_c , HGL = OB

- If tailwater is below pipe invert level or below critical depth, then starting hydraulic grade line is set to the normal flow depth in pipe.
- TWL < IL or TWL < d_c , HGL = d_n

Tidal Systems and Flood Gates

- Flood gates prevent water backflow.
- Designers should consider higher hydraulic head loss associated with gates.
- Regular maintenance is crucial for efficient operation, especially in debrisprone areas.
- Designer's must assess impact of flood gate in closed position during design storm event.

- Urbanisation increases discharges, placing existing systems under stress.
- Potentially overwhelming downstream pipes and channels.

ENGINEERING HUB

- Structure losses must be assessed when connecting into an existing system.
- Ideally, existing HGL is a direct measurement BUT this is impractical.
- We need to estimate starting HGL (TWL).

- Before adopting TWL condition, we need to understand how the existing system performs.
- May need to analyse existing network and catchments.
- Liaise with authority as soon as possible.

This pit may have a minor event HGL like this?

Connection of our new system will probably perform well.

What if our minor HGL was a little higher?

Connection of our new system could still perform as required, though water levels may be higher.

What if our existing system was already close to or at capacity?

This happens more often than you think!

We simply cannot force more water into the existing system.

Surcharge of the system will almost certainly occur!

- Adopt starting water level (TWL) 150mm below grate/inlet/lid level (SL).
 - With approval from the authority.
 - Minor design storm only.
- Modifications to an existing drainage system must not compromise the system's performance!

Hydraulic Calculations

- Hydraulic grade line (HGL) method for underground piped networks.
- <u>Hydrologic</u> analysis: Upstream to downstream.
- <u>Hydraulic</u> analysis: Downstream to upstream. (Start at outfall)

engineering Hub

Generally this applies but there are always exceptions!

ILET DESIGN		DRAIN DEBIGN										HEAD LOSSES											
	Qg	тс	Т	CA	Qrat	٩	L	8			Vf=Q/A	Qeap	Voap	Vt		V19/2g	Ku	hu	Kw	hw	81	ſ	
INLET TYPE	FLOW INTO INLET	CRITICAL TIME OF CONCENTRATION	RAINFALL INTENSITY	TOTAL (C x A)	PEAK FLOW	PIPE FLOW	REACH LENGTH	PIPE GRADE	PIPE 812E	PIPE CLASS	FULL PIPE VELOCITY	CAPACITY FLOW	CAPACITY VELOCITY	TRAVEL VELOCITY	CHART(8) USED	VELOCITY HEAD	UI'S HEAD LO3S COEEFICIENT	NIS HEAD LOSS	W.B.E. COEFFICIENT	CHANGE IN W.S.E.	PIPE FRICTION SLOPE		
	l/s	min	mmiltr	ha	lis	lis	m	5	mm		m/s	Us	m/s	m/s		n		m		m	- 5		
BCC-F12-900x600	9	,	151	0.022	9	9	20	0.5	294	ENVIROPIPE SN8	0.13	65	0.95	0.67	G1	0.001	7	0.006		0.006	0.44	L	
BCC-FI2-900x600	8	3.5	146	0.04	16	16	20	0.5	294	ENVIROPIPE SN8	0.24	65	0.95	0.8	Т1	0.003	1.95	0.006		0.006	0.44		
BCC-FI2-900x600	8	5.91	142	0.06	23	23	20	0.5	294	ENVIROPIPE SN8	0.35	65	0.95	0.88	T1	0.006	1.56	0.01		0.01	0.22		
CC-F12-900x600	9	6.29	139	0.139	53	53	28.995	0.5	371	ENVIROPIPE SN8	0.49	121	1.11	1.08	T3/T6	0.012	1.99	0.025	2.43	0.03	0.25		
CC-LIL-TE-2.4	7	6.74	136	0.155	58	58	21.801	0.3	438	ENVIROPIPE SN8	0.39	145	0.96	0.91	T9/T10	0.008	2.27	0.017	2.73	0.021	0.06		
C-KIL-TE-2.4	13	7.14	133	0.187	69	69	21.036	0.3	438	ENVIROPIPE SN8	0.46	145	0.96	0.95	т1/т3	0.011	1.14	0.012	1.21	0.013	0.06		
FI1-900x900	2	7.51	130	0.327	118	118	21.118	0.25	514	ENVIROPIPE SN8	0.57	203	0.98	1.02	Т3/Т6	0.017	2.1	0.035	2.36	0.039	0.09		
(IL-TE-2.4	10	7.85	128	0.44	156	156	19.121	0.25	514	ENVIROPIPE SN8	0.75	203	0.98	1.08	тз	0.029	1.73	0.05	2.12	0.062	0.21		
/L-TE-2.4	6	8.15	126	0.454	159	159	10.191	0.25	514	ENVIROPIPE SN8	0.77	203	0.98	1.08	Т3/Т6	0.03	1.93	0.058	2.3	0.069	0.71		
1H1050		8.31	125	0.475	165	165	12.774	0.2	591	ENVIROPIPE SN8	0.6	264	0.96	1.01	Т3/Т6	0.018	1.8	0.033	2.16	0.04	0.07		
H1050		8.52	124	0.475	163	163	25.338	0.2	591	ENVIROPIPE SN8	0.6	264	0.96	1.01	T9/T10	0.018	2.33	0.042	2.73	0.049	0.07		
H1050		8.93	121	0.535	181	181	6.6	0.2	591	ENVIROPIPE SN8	0.66	264	0.96	1.04	T10	0.022	2.09	0.046	2.66	0.059	0.09		
11500															т6/т9		2.21	0.059	2.52	0.067			
00×600	0	5.02	151	0.059	25	25	10.24	1	223	ENVIROPIPE SN8	0.63	44	1.12	1.15	Т3/Т6	0.02	2	0.04	2.33	0.047	1.11	L	
00×600	9														Т3/Т6		1.99	0.025	2.43	0.03			
00×600	0	,	151	0	0	0	16	1	223	ENVIROPIPE SN8	0	44	1.12	2		0	0	0		0	0.45	L	
TE-2.4	13														т1/тз		1.14	0.012	1.21	0.013			
00×600	0	5.02	151	0.135	56	56	14.009	1	223	ENVIROPIPE SN8	1.44	44	1.12	1.44	T1	0.106	0.21	0.023		0.023	1.67	L	
00ex00	2														Т3/Т6		2.1	0.035	2.36	0.039			
00×600	•	5.03	151	0.088	37	37	14.288	1	223	ENVIROPIPE SN8	0.94	44	1.12	1.26	т1	0.045	0.2	0.009		0.009	1	L	
TE-2.4	10														тз		1.73	0.05	2.12	0.062		L	
500×600	9	,	151	0.02	9	9	22.638	0.5	294	ENVIROPIPE SN8	0.13	65	0.95	0.66	G2	0.001	9.7	0.008		0.008	0.01	L	
H1050															Т3/Т6		1.8	0.033	2.16	0.04			
-900×600	,	5.03	151	0.056	24	24	30	0.5	294	ENVIROPIPE SN8	0.35	65	0.95	0.88	T10	0.006	2.19	0.013	2.75	0.017	0.05	L	
-900×600	6	5.6	145	0.14	57	57	36	0.5	294	ENVIROPIPE SN8	0.83	65	0.95	1.08	т6/т9	0.035	2.13	0.076	2.51	0.089	0.34		
2-900×600	6	6.16	140	0.224	87	87	24.37	0.5	371	ENVIROPIPE SN8	0.81	121	1.11	1.21	Т3/Т6	0.033	1.87	0.062	2.25	0.075	0.57	L	
-MH1050		6.49	137	0.267	102	102	10.695	0.25	438	ENVIROPIPE SN8	0.67	133	0.88	0.97	T10	0.023	1.97	0.046	2.33	0.054	0.15		
C-MH1050		6.68	136	0.267	101	101	6.563	0.25	438	ENVIROPIPE SN8	0.67	133	0.88	0.97	Т3/Т6	0.023	1.78	0.041	1.91	0.044	0.14		
CC-MH1050		6.79	135	0.279	105	100	8.026	0.2	591	ENVIROPIPE SN8	0.36	264	0.96	0.89	т6/т9	0.007	2.22	0.015	2.48	0.017	0.03	L	
BCC-MH1050		6.94	134	0.299	111	106	38.123	0.2	591	ENVIROPIPE SN8	0.39	264	0.96	0.91	т1/т3	0.008	0.49	0.004	0.55	0.004	0.03	L	
BCC-MH1200		7.64	129	0.381	137	132	16.019	0.2	731	ENVIROPIPE SN8	0.31	465	1.11	0.95	тз	0.005	1.7	0.009	2.02	0.01	0.02		
BCC-MH1500		9.04	121	0.917	308	303	12.267	0.2	731	ENVIROPIPE SN8	0.72	465	1.11	1.18	т6/т9	0.027	2.21	0.059	2.52	0.067	0.08		
n CONCRETE DETENTION TANK		9.21	120	0.917	306	301	17.526	0.4	371	ENVIROPIPE SN8	2.78	108	1	2.78	т1/тз	0.395	0.61	0.24	0.72	0.284	3.12		
BCC-MH1050		9.32	120	0.917	305	300	8.205	0.5	591	ENVIROPIPE SN8	1.09	417	1.52	1.65	Т6/Т9	0.061	2.59	0.158	3.36	0.205	0.65		
BCC-MH1200																						L	
BCC-LIL-TE-2.4	0	,	151	0.012	5	0	8.66	1	371	ENVIROPIPE SN8	0	170	1.58	2		0	0	0		0	0	L	
BCC-MH1050															т6/тэ		2.22	0.015	2.48	0.017			
BCC-FI2-900x600	8	,	151	0.02	8	8	9.861	2	371	ENVIROPIPE SN8	0.08	241	2.23	1.04	G2	٥	9.7	0.003		0.003	0	L	
BCC-MH1050															т1/тз		0.49	0.004	0.55	0.004			
BCC-F12-900x600	35	,	151	0.083	35	35	8.202	2	371	ENVIROPIPE SN8	0.32	241	2.23	2.63	G2	0.005	9.7	0.051		0.051	2.48		

HGL Open Channel Model

- Series of connected open channels.
- System flows full but not under pressure.
- Use Manning's Equation and Volumetric Flow Equation.

HGL Open Channel Model

- Nomographs developed based on specific Manning's roughness values.
- Quickly approximate pipe capacity.
- Useful for conceptual designs.
- <u>Not suitable</u> for detailed design.

IPWEA QUDM 2024

ENGINEERING HUB

IPWEA QUDM 2024

engineering Hub

Subdivision Plan of Development

First step – obtain existing contours

- LIDAR
- Council mapping
- GIS
- Site inspections
- Survey

Ouilty

ENGINEERING HUB

Next step – approximate road grading

• Road grading (assume close to existing topography / minimal earthworks)

Next step – approximate lot grading

• Lot grading (towards / away from road, minimise earthworks)

Next step – site catchment

- Identify catchment boundaries external catchment, ridges, valleys.
- Identify lawful point of discharge

Next step – initial inlet locations:

- Sag inlets at low points, sag locations
- On-grade pits at intersection kerb returns
- Headwall outlets at point of discharge

Sub catchments for each inlet:

- Rational Method for peak discharge
- Remember Q_c Q_a Q_i Q_b

Approximate pipe size based on:

- Pipe to convey Q_i (inflow + any flow from upstream pipes)
- Pipe grade based on assumptions similar to road grade, minimum grade?

Approximate pipe size based on:

• Pipe nomographs

ENGINEERING HUB

This approach works well for concept designs. Detailed designs will have a more accurate analysis of time of concentration incorporating pipe flow time.

Here are common problems we encounter in the industry:

- Hydraulic Grade Line (HGL) Analysis
- Pipe friction losses
- Pit structure losses (K Values)
- Structural requirements (trench types, construction loads)
- Design parameters (cover, min/max velocities, materials)
- Buoyancy

If these sound familiar but you're not 100% confident, get in touch and we can teach you.

Want to learn more?

We can help with:

- Free consultations
- Online self-paced learning
- Coaching
- Face-to-face workshops
- In-house training delivery

info@quiltyenghub.com

linkedin.com/in/seanquiltycpeng

quiltyenghub.com

Free resources, tips and tricks, monthly newsletter

Quilty Hub Pty Ltd trading as Quilty Engineering Hub ACN 673 384 944 | ABN 24 673 384 944