

Engineering Fundamentals Stormwater Inlet Design Introduction

Copyright 2024 Quilty Hub Pty Ltd All rights reserved.

Local Standards and Guidelines

Queensland Urban Drainage Manual (QUDM):

- Widely adopted throughout Queensland
- QUDM's Flow Limits and Storm Frequency vs Development Category will differ from other States and Territories

Get in touch if you need help!

Source: Institute of Public Works Engineering Australasia, Queensland 2017

Inlet Terminology

Urban Environment

- Densely populated
- Spatially constrained
- Lots of vehicle movement
- Lots of pedestrian activities Must control flooding:
- Frequent, infrequent, rare events
 - Convenience
 - Safety
 - Protect property

Longitudinal Drainage

Longitudinal drainage or pit and pipe drainage

Combination of stormwater inlets and interconnected pipes

Gravity system to free-drain

Majority of Australian systems discharge into creeks, rivers or the ocean

Longitudinal Drainage

Needed to reduce flooding

Transfers overland flow into underground piped network

Strategically placed infrastructure

- Based on calculations and flood estimation
- Provide convenience
- Provide safety
- Reduce risk to community
- Capture water for re-use

Stormwater Inlets

Two classifications:

- Sag inlet
- On-grade inlet

Many names:

- Inlets, pits, gully pits
- Field inlets, drop inlets
- Kerb openings, side entry pits

Storm Frequency

Minor

- Underground flow •
- Longitudinal drainage sys •

Major

- Overland flow •
- Road reserve or drainage • channel

	Open spac	e										
	Major	Kerb and channel flow										
stem	road	Cross drainage (culverts)										
	Minor	Kerb and channel flow										
	road	Cross drainage (culverts)										
2	Typical Sto	orm Frequency - Major Storm										
	Development category											
	Set floor levels in hospitals, emergency											

Industrial

Rural residential

Typical Storm Frequency - Minor Storm

Central business and commercial

Urban residential high density

Urban residential low density

Development category

road	Cross drainage (culverts)	50	2%											
Minor	Kerb and channel flow	Dev. Cat.	Dev. Cat.											
road	Cross drainage (culverts)	10	10%											
ypical Storm Frequency - Major Storm														
l	Development category	ARI (yrs)	AEP											
Set floor le	evels in hospitals, emergency	500	0.2%											
services, fl	ood evacuation buildings	500	0.270											
Set floor le	evels in emergency shelters,													
ibraries, a	ged care housing, critical utility	200	0.5%											
nfrastruct														
Set floo <u>r</u> le	evels in residential buildings,	100	1%											
overland f	low paths	100	T /0											

ARI (yrs)

10

2

10

2

2

1

10

AEP

10%

39%

10%

39%

39%

63%

10%

Kerb Inlet

- Kerb inlet (side entry pit)
- Grated inlet
- Combination inlet (gully pit)

Kerb Inlet

- Kerb opening
- Lintel
- Trough
- Grate
- Chamber
- Kerb transitions

Field Inlet (Drop Inlet)

- Flush-mounted grate
- Elevated grate
- Dome screen

Yep, you need to maintain these things... And quickly – before the next storm hits!

Field Inlet

- Grate
- Apron (optional)
- Chamber

Flow Limits

Flow Limits

Before calculating how much runoff our inlet will capture rate, we <u>must</u>:

- Assess the approaching flow heading towards the inlet
- Ensure safe flow width
- Ensure safe flow depth
- Ensure safe depth*velocity product

Flow Limits Vehicle consideration

Flow Limits

Pedestrian consideration

Flow Limits – Minor Storm

Table 7.4.2 - Flow width limits for 'longitudinal' flow during MINOR STORM

Site condition	Major road	Minor road
Normal situation	Parking lane width (usually 2.5m) or	(i) Full pavement width with zero
	breakdown lane width	depth at crown
		(ii) Where one way crossfall exists
		(i.e. no crown), flow width is limited
		to the high side of road pavement,
		but not above top of kerb on low
		side
Where parking lane may become an		
acceleration, deceleration or turn	1.0m	Not applicable
lane		
Where road falls towards median	1 0m	Not applicable
Pedestrian crossings or bus stops	0 45m	0 45m
At intersection kerb returns		
(including entrances to shopping	1 0m	1 0m
centres and other major	1.011	1.011
developments)		
Vehicular safety	Flow depth and depth*velocity limits	as per the Major Storm requirements
	(Table 7.4.4)	

Flow Limits – Minor Storm

Table 7.4.3 — Flow limits for 'transverse' flow during MINOR STORM

Site condition	Flow depth and width limits
Still water at road sag	Maximum flow depth, dg ≤ 300mm
Vehicle safety: Transverse flow limits	Maximum flow depth, d _g ≤ 300mm
(no risk to life) e.g. road intersection	Depth*velocity product, d _g .V _{ave} ≤ 0.3m ² /s
Vehicle safety: Transverse flow limits	Maximum flow depth, d _g ≤ 200mm
(risk to life) e.g. causeway	Depth*velocity product, d _g .V _{ave} ≤ 0.3m ² /s

Flow Limits – Major Storm

Table 7.4.4 - Flow limits for 'longitudinal' flow during MAJOR STORM

Site condition	Flow depth and width limits
Where floor levels of adjacent buildings are above road level	Total flow is contained within road reserve. Minimum
	freeboard of 300 mm to floor level of adjacent
	buildings.
Where floor levels of existing adjacent buildings are below, or less	Maximum flow depth of 50 mm above top of kerb
than 300 mm above, the top of kerb; and there is at least 100 mm	
fall on footpath towards the kerb	
Where floor levels of existing adjacent buildings are below, or less	Maximum flow depth at top of kerb
than 300 mm above, the top of kerb; and there is less than 100 mm	
fall on footpath towards the kerb	
Vehicle safety: Flow conditions at kerb for flow along a road (no	Maximum flow depth, $d_g \le 250$ mm
risk to life)	Depth*velocity product, $d_g V_{ave} \le 0.6m^2/s$
Vehicle safety: Flow conditions at kerb for flow along kerb	Maximum flow depth, d _g ≤ 250mm
(potential risk to life)	Depth*velocity product, $d_g V_{ave} \le 0.4 m^2/s$

Flow Limits – Major Storm

Table 7.4.5 — Flow limits for 'transverse' flow during MAJOR STORM

Site condition	Flow depth and width limits
Still water at road sag	Maximum flow depth, d _g ≤ 300mm
Vehicle safety: Transverse flow limits	Maximum flow depth, $d_g \le 300$ mm
(no risk to life) e.g. road intersection	Depth*velocity product, $d_g.V_{ave} \le 0.45$ m ² /s
Vehicle safety: Transverse flow limits	Maximum flow depth, $d_g \le 200$ mm
(risk to life) e.g. causeway	Depth*velocity product, $d_g V_{ave} \le 0.3 m^2/s$

Flow Limits Half Road Capacity

Izzard's Equation

- One method
- Based on Manning's equation for triangular section
- Estimates <u>half-road</u> capacity
- Used for approach flow, Q_a

$$Q = 0.375F\left[\left(\frac{Z_g}{n_g}\right)\left(d_g^{2.667} - d_p^{2.667}\right) + \left(\frac{Z_p}{n_p}\right)\left(d_p^{2.667} - d_c^{2.667}\right)\right]S^{0.5}$$

Half-Road Flow Capacity - Izzard's Equation

0.400 m²/s

d*V

Wflood

 $Q = 0.375F\left[\left(\frac{Z_g}{n_g}\right)\left(d_g^{2.667} - d_p^{2.667}\right) + \left(\frac{Z_p}{n_p}\right)\left(d_p^{2.667} - d_c^{2.667}\right)\right]S^{0.5}$

																							Flov	v over cro	own	Flow over crown			Flow over crown			Flow over crown			Flow over crown			Flow over crown		
		dg	А	W	dg	А	W	dg	А	w	dg	A	W	d _g	A	W	dg	А	w	dg	Α	w	dg	А	W	dg	А	w	dg	А	w	dg	А	W	d _g	A	w	dg	А	w
		0.030	0.004	0.275	0.040	0.009	0.675	0.050	0.018	1.075	0.060	0.030	1.475	0.070	0.047	1.875	0.080	0.068	2.275	0.090	0.093	2.675	0.100	0.121	3.000	0.110	0.151	3.000	0.120	0.181	3.000	0.130	0.211	3.000	0.140	0.241	3.000	0.150	0.271	3.000
		d _p	\mathbf{d}_{c}		dp	d _c		dp	dc		dp	d_c		dp	d_c		d _p	d_c		dp	d_c		dp	d_c		d _p	d_c		d,	dc		dp	d_c		d _p	d_c		d _p	d_{c}	
		0.000	0.000		0.010	0.000		0.020	0.000		0.030	0.000		0.040	0.000		0.050	0.000		0.060	0.000		0.070	0.002		0.080	0.012		0.090	0.022		0.100	0.032		0.110	0.042		0.120	0.052	
G	rade	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	V	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V	Q	v	d _g .V
m/m	96	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s
0.005	0.5%	0.001	0.354	0.011	0.003	0.379	0.015	0.007	0.402	0.020	0.013	0.439	0.026	0.023	0.483	0.034	0.036	0.528	0.042	0.053	0.574	0.052	0.075	0.620	0.062	0.102	0.673	0.074	0.133	0.731	0.088	0.167	0.791	0.103	0.205	0.851	0.119	0.247	0.910	0.137
0.010	1.0%	0.002	0.501	0.015	0.005	0.536	0.021	0.010	0.568	0.028	0.019	0.621	0.037	0.032	0.683	0.048	0.051	0.747	0.060	0.075	0.812	0.073	0.106	0.876	0.088	0.144	0.952	0.105	0.188	1.034	0.124	0.236	1.119	0.145	0.290	1.204	0.169	0.349	1.287	0.193
0.015	1.5%	0.003	0.613	0.018	0.006	0.656	0.026	0.012	0.696	0.035	0.023	0.761	0.046	0.039	0.836	0.059	0.062	0.915	0.073	0.092	0.994	0.089	0.130	1.073	0.107	0.176	1.166	0.128	0.230	1.267	0.152	0.290	1.371	0.178	0.356	1.474	0.206	0.428	1.576	0.236
0.020	2.0%	0.003	0.708	0.021	0.007	0.758	0.030	0.014	0.804	0.040	0.027	0.878	0.053	0.045	0.965	0.068	0.072	1.056	0.084	0.106	1.148	0.103	0.150	1.239	0.124	0.204	1.346	0.148	0.265	1.463	0.176	0.334	1.583	0.206	0.411	1.702	0.238	0.494	1.820	0.273
0.025	2.5%	0.003	0.792	0.024	0.008	0.847	0.034	0.016	0.898	0.045	0.030	0.982	0.059	0.051	1.079	0.076	0.080	1.181	0.094	0.119	1.283	0.115	0.168	1.385	0.139	0.228	1.505	0.166	0.297	1.636	0.196	0.374	1.769	0.230	0.459	1.903	0.266	0.552	2.035	0.305
0.030	3.0%	0.004	0.867	0.026	0.008	0.928	0.037	0.017	0.984	0.049	0.033	1.076	0.065	0.056	1.182	0.083	0.088	1.294	0.103	0.130	1.406	0.127	0.184	1.517	0.152	0.249	1.648	0.181	0.325	1.792	0.215	0.410	1.938	0.252	0.503	2.085	0.292	0.605	2.229	0.334
0.035	3.5%	0.004	0.937	0.028	0.009	1.002	0.040	0.019	1.063	0.053	0.035	1.162	0.070	0.060	1.277	0.089	0.095	1.397	0.112	0.141	1.518	0.137	0.199	1.639	0.164	0.269	1.780	0.196	0.351	1.935	0.232	0.442	2.094	0.272	0.543	2.252	0.315	0.653	2.408	0.361
0.040	4.0%	0.004	1.001	0.030	0.010	1.072	0.043	0.020	1.136	0.057	0.038	1.242	0.075	0.064	1.365	0.096	0.101	1.494	0.120	0.150	1.623	0.146	0.213	1.752	0.175	0.288	1.903	0.209	0.375	2.069	0.248	0.473	2.238	0.291	0.581	2.407	0.337	0.698	2.574	0.386
0.045	4.5%	0.004	1.062	0.032	0.010	1.137	0.045	0.021	1.205	0.060	0.040	1.317	0.079	0.068	1.448	0.101	0.108	1.584	0.127	0.159	1.722	0.155	0.225	1.859	0.186	0.305	2.019	0.222	0.398	2.194	0.263	0.502	2.374	0.309	0.616	2.553	0.357	0.741	2.730	0.410
0.050	5.0%	0.005	1.120	0.034	0.011	1.198	0.048	0.022	1.271	0.064	0.042	1.389	0.083	0.072	1.526	0.107	0.113	1.670	0.134	0.168	1.815	0.163	0.238	1.959	0.196	0.322	2.128	0.234	0.419	2.313	0.278	0.529	2.502	0.325	0.649	2.691	0.377	0.781	2.878	0.432
0.055	5.5%	0.005	1.174	0.035	0.011	1.257	0.050	0.023	1.333	0.067	0.044	1.456	0.087	0.075	1.601	0.112	0.119	1.752	0.140	0.176	1.903	0.171	0.249	2.055	0.205	0.338	2.232	0.246	0.440	2.426	0.291	0.555	2.625	0.341	0.681	2.823	0.395	0.819	3.018	0.453
0.060	6.0%	0.005	1 227	0.037	0.012	1 3 1 3	0.053	0.025	1 392	0.070	0.046	1 521	0.091	0.079	1 672	0 117	0 124	1 829	0 146	0 184	1 988	0 179	0.260	2 146	0.215	0 353	2 331	0.256	0.459	2 534	0 304	0 579	2 741	0 356	0 711	2 948	0.413	0.855	3 153	0.473
0.065	6 5%	0.005	1 277	0.038	0.012	1 366	0.055	0.026	1 449	0.072	0.048	1 583	0.095	0.082	1 740	0 122	0.129	1 904	0.152	0 192	2.069	0.186	0.271	2 234	0.223	0.367	2 426	0.267	0.478	2 637	0 316	0.603	2 853	0 371	0 740	3.069	0.430	0.890	3 281	0.492
0.070	7.0%	0.005	1.325	0.040	0.013	1.418	0.057	0.026	1.503	0.075	0.050	1.643	0.099	0.085	1.806	0.126	0.134	1.976	0.158	0.199	2.147	0.193	0.281	2.318	0.232	0.381	2.518	0.277	0.496	2.737	0.328	0.626	2.961	0.385	0.768	3.184	0.446	0.924	3.405	0.511
0.075	7 5%	0.006	1 371	0.041	0.013	1 467	0.059	0.027	1 556	0.078	0.052	1 701	0.102	0.088	1 869	0.131	0.139	2 045	0 164	0.206	2 2 2 3	0.200	0.291	2 399	0.240	0 394	2 606	0.287	0.514	2 833	0 340	0.648	3.065	0.398	0.795	3 296	0.461	0.956	3 5 2 5	0.529
0.080	8.0%	0.006	1 416	0.042	0.013	1.516	0.055	0.027	1.607	0.080	0.052	1 757	0.102	0.091	1.930	0.135	0.143	2.045	0.169	0.213	2.225	0.200	0.301	2.555	0.240	0.407	2.000	0.207	0.530	2.035	0.351	0.669	3.165	0.411	0.821	3 404	0.477	0.988	3 640	0.546
0.085	8.5%	0.006	1.460	0.042	0.014	1 562	0.062	0.020	1.657	0.083	0.055	1.811	0.109	0.094	1 990	0.139	0.148	2 177	0.174	0.219	2.256	0.207	0.301	2.470	0.255	0.420	2.052	0.200	0.530	3.016	0.352	0.689	3 263	0.424	0.847	3 509	0.491	1.018	3 752	0.540
0.090	9.0%	0.006	1 502	0.045	0.014	1 608	0.064	0.030	1 705	0.085	0.057	1.863	0.112	0.096	2.048	0.143	0.152	2 241	0.179	0.226	2 435	0.219	0.319	2 628	0.263	0.432	2.855	0 314	0.563	3 103	0 372	0.709	3 357	0.436	0.871	3 611	0.505	1.048	3.861	0.579
0.095	0 504	0.005	1 542	0.045	0.015	1.653	0.066	0.030	1 751	0.000	0.057	1.003	0.112	0.000	2.040	0.147	0.152	2 202	0.194	0.220	2.455	0.225	0.319	2 700	0.270	0.444	2.000	0.314	0.505	3 100	0.202	0.729	2 // 0	0.449	0.000	2 710	0.500	1.076	2 967	0.595
0.095	2.570	0.008	1.545	0.046	0.015	1.052	0.066	0.031	1.707	0.000	0.058	1.914	0.115	0.055	2.104	0.147	0.150	2.302	0.104	0.232	2.502	0.225	0.320	2.700	0.270	0.444	2.955	0.323	0.578	3.100	0.303	0.729	3.520	0.440	0.035	3.710	0.519	1.076	3.967	0.555
0.100	10.0%	0.00/	1.505	0.048	0.015	1.034	0.068	0.052	1./9/	0.090	0.060	1.304	0.118	0.102	2.156	0.151	0.160	2.302	0.109	0.258	2.506	0.251	0.550	2.770	0.277	0.455	2.010	0.551	0.593	3.2/1	0.555	0.748	3.553	0.460	0.919	5.000	0.555	1.104	4.070	0.610

Half-Road Flow Capacity - Izzard's Equation

						Actual	de	-		Zp C	d _c = dept rown if reac	h at hed															
	Flow Correction Factor F					F	0.9			Figure 7.4.	re 7.4.2 - Half road flow Channel																
	Width of kerb (invert to lip) w _{chrl}				w _{chnl}	0.275	m		Width of	f half road	d (invert t	to crown)	Whalfroad	3.000	m		Max. allo	owable d'	*V produ	d*V 0.400 m ² /s						
	Depth of kerb (invert to lip) d _{chri}					d _{chnl}	0.030	m		Width of	fpaveme	nt (lip to	crown)		w _p	2.725	m		Max. allo	owable fle	ooded wi	dth	Wflood	2.500	m		
Cross slope gradient of kerb Z _g					Zg	9.167	.167 1 V : Zg H Cross slope gradient of pavement Zp 40.000 1 V : Zp H																				
		Manning	s' roughr	ness of ke	erb	n _g	0.013			Manning	s roughr	ness of pa	avement		n _p	0.015											
																							Flov	v over cre	own		
		d.	Δ	w	d.	Δ	w	d.	Δ	w	d.	Α	w	d.	Α	W d. A			w	d.	Α	w	d.	A	w		
		0.030	0.004	0.275	0.040	0.009	0.675	0.050	0.018	1.075	0.060	0.030	1.475	0.070	0.047	1.875	0.080	0.068	2.275	0.090	0.093	2.675	0.100	0.121	3.000		
		d,	d		do	d,		d,	dc		d _o	dc		d _o	dc		d _o	d		d _e	dc		d,	d,			
		0.000	0.000		0.010	0.000		0.020	0.000		0.030	0.000		0.040	0.000		0.050	0.000		0.060	0.000		0.070	0.002			
Gra	de	Q	V	d _g .V	Q	V	d _g .V	Q	٧	d _g .V	Q	٧	d _g .V	Q	V	d _g .V	Q	V	d _g .V	Q	V	d _g .V	Q	V	d _g .V		
m/m	%	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s	m3/s	m/s	m2/s		
0.005	0.5%	0.001	0.354	0.011	0.003	0.379	0.015	0.007	0.402	0.020	0.013	0.439	0.026	0.023	0.483	0.034	0.036	0.528	0.042	0.053	0.574	0.052	0.075	0.620	0.062		
0.010	1.0%	0.002	0.501	0.015	0.005	0.536	0.021	0.010	0.568	0.028	0.019	0.621	0.037	0.032	0.683	0.048	0.051	0.747	0.060	0.075	0.812	0.073	0.106	0.876	0.088		
0.015	1.5%	0.003	0.613	0.018	0.006	0.656	0.026	0.012	0.696	0.035	0.023	0.761	0.046	0.039	0.836	0.059	0.062	0.915	0.073	0.092	0.994	0.089	0.130	1.073	0.107		
0.020	2.0%	0.003	0.708	0.021	0.007	0.758	0.030	0.014	0.804	0.040	0.027	0.878	0.053	0.045	0.965	0.068	0.072	1.056	0.084	0.106	1.148	0.103	0.150	1.239	0.124		
0.025	2.5%	0.003	0.792	0.024	0.008	0.847	0.034	0.016	0.898	0.045	0.030	0.982	0.059	0.051	1.079	0.076	0.080	1.181	0.094	0.119	1.283	0.115	0.168	Si Will	39		
0.030	2.01/	0.004	0.967	0.000	0.000	0.039	0.027	0.017	0.004	0.040	0.022	1.070	0.005	0.050	1 1 0 0	0.092	0.000	1.204	0.102	0.120	1.400	0.127	0.104				

You get this design spreadsheet when you enrol in our online course!

$f Q_c \ Q_a \ Q_b$

Flow Terminology

Q_c Catchment flow

Approach flow

Inflow

Q_a

 Q_i

Q_b

Bypass flow

Need to understand topography:

- Obtain contours
- Survey
- Site visit

Then we understand where:

- Road falls (%) = on-grade pits
- Road has a low point = sag pits
- Lots grade to / from road

• Lots grade to or away from roads

Road crests push water in opposite directions

- Two-way crossfall = water runs along kerb on both sides of road
- Kerb returns direct flow around intersections

• Kerb returns direct flow around intersections

Source: Google 2024

Catchment flow

- Flow approaching inlet
- Consists of only the catchment for the inlet pit
- Rational Method to calculate peak discharge, Q

 Q_{c}

Q_i Inflow

- Total flow inlet captures and conveys underground through the stormwater piped network
- Inlet capture charts are needed to calculate inflow

Q_b Bypass flow

- Remaining flow that is not captured by inlet
- Bypass flow = Approach flow minus captured flow

$$Q_b = Q_a - Q_i$$

Q_a Approach flow
If inlet is at <u>top of catchment</u>
Approach flow = Catchment flow
(no upstream bypass flow)

If inlet <u>has upstream catchment</u> *Approach flow = Catchment flow + Upstream bypass flow*

Inlet Capture Charts

Inlet Capture

- Mathematical equations can estimate how much stormwater an inlet can capture
- Laboratory testing can prove with results
- Hydraulic capture charts created from equations or test results
- Allows engineers and designers to predict behaviour of stormwater inlets

Source: University of South Australia 2024

Sag Condition

Hydraulic performance based on:

- Ponding depth above inlet opening
- Physical dimensions of inlet
 - Kerb opening
 - Grate opening

Sag Condition

Once approach flow has been calculated:

- Select trial inlet type
- Identify chart curve representing inlet type
- Read from 'capture flow' intersecting with curve
- Read down to 'depth at invert of channel'
- Check if depth is acceptable

Source: Brisbane City Council – BSD-8077 2023

Sag Condition

Source: Brisbane City Council – BSD-8077 2023

Hydraulic performance based on:

- Physical dimensions of inlet
 - Kerb opening
 - Grate opening
- Road longitudinal grade
- Road crossfall

Hydraulic performance based on:

- Physical dimensions of inlet
 - Kerb opening
 - Grate opening
- Road longitudinal grade
- Road crossfall

Once approach flow has been calculated:

- Select trial inlet type
- Identify chart curve representing road longitudinal grade
- Read from 'approach flow' intersecting with curve
- Read across to 'capture flow'

Source: Brisbane City Council – BSD-8071 2023

Ouilty Engineering Hub

Source: Brisbane City Council – BSD-8071 2023

Here are common problems we encounter in the industry:

- Custom inlet charts
- Various inlet configurations
- Different States & Territories, Councils
- Field inlets on-grade (not in sag)
- Blockage factors
- Sensitivity analysis (what-if scenarios)
- Severe storm impact statement

If these sound familiar but you're not 100% confident, get in touch and we can teach you.

Want to learn more?

We can help with:

- Free consultations
- Online self-paced learning
- Coaching
- Face-to-face workshops
- In-house training delivery

info@quiltyenghub.com

linkedin.com/in/seanquiltycpeng

quiltyenghub.com

