

Engineering Fundamentals Stormwater

The Rational Method

Copyright 2024 Quilty Hub Pty Ltd All rights reserved.

Simplify Rainfall with Design Storms

Simplifying Rainfall

Rainfall is complex Need to simplify Easier to calculate and analyse

Design Storms

Hypothetical rainfall events Simulate natural rainfall events Based on historical rainfall data Design storm classified by:

- Storm burst duration
- Storm frequency

Example:

- 1% AEP storm with 10 minute burst duration; or
- Q₁₀₀ event with storm burst of 10 minutes

Anatomy of a Storm Pre-storm rainfall Pre-burst rainfall Storm burst rainfall Post-burst rainfall

Complete Storm

Entirety of a rainfall event Includes:

- Build-up
- Peak
- Decline

Storm Burst

Rational Method based on analysing the storm burst.

Very frequent Storms

Light rainfall intensity Likely to occur multiple times a year

Frequent Storms

Light to moderate rainfall 63% to 18% chance of occurring in any given year

 Q_1 to Q_5 event

Infrequent Storms

Heavy rainfall intensity

10% to 1% chance of occurring in any given year

 Q_{10} to Q_{100} event

Rare Storms

Very heavy rainfall

0.5% to 0.1% chance of occurring in any given year

 Q_{200} to Q_{1000} event

Extremely Rare Storms

Extreme rainfall

0.05% to 0.02% chance of occurring in any given year

 $\mathrm{Q}_{\mathrm{2000}}$ to $\mathrm{Q}_{\mathrm{5000}}$ event

Storm Frequency

Storms broadly grouped as:

- Very frequent
- Frequent
- Infrequent
- Rare
- Extremely Rare
- Extreme

Frequency	EV	AEP	AEP	ARI
Descriptor	ET	(%)	(1 in X)	(Years)
Very frequent	12			
	6	99.75	1.002	0.17
	4	98.17	1.02	0.25
	3	95.02	1.05	0.33
	2	86.47	1.16	0.50
Frequent	1	63.20	1.58	1.00
	0.69	50.00	2	1.44
	0.50	39.35	2.54	2.00
	0.22	20.00	5	4.48
	0.20	18.13	5.52	5.00
Infrequent	0.11	10.00	10	9.49
	0.05	5.00	20	20
	0.02	2.00	50	50
	0.01	1.00	100	100
Rare	0.005	0.50	200	200
	0.002	0.20	500	500
	0.001	0.10	1000	1000
Extremely	0.0005	0.05	2000	2000
Rare	0.0002	0.02	5000	5000
Extreme			PMP	

Storm Frequency

Frequency measured in:

- Exceedances per year (EY)
- Annual Exceedance Probability (AEP)
- Average Recurrence Interval (ARI)

Frequency Descriptor	EY	AEP (%)	AEP (1 in X)	ARI (Years)
Very frequent	12	(70)	(1 117)	(rears)
	6	99.75	1.002	0.17
	4	98.17	1.02	0.25
	3	95.02	1.05	0.33
	2	86.47	1.16	0.50
Frequent	1	63.20	1.58	1.00
	0.69	50.00	2	1.44
	0.50	39.35	2.54	2.00
	0.22	20.00	5	4.48
	0.20	18.13	5.52	5.00
Infrequent	0.11	10.00	10	9.49
	0.05	5.00	20	20
	0.02	2.00	50	50
	0.01	1.00	100	100
Rare	0.005	0.50	200	200
	0.002	0.20	500	500
	0.001	0.10	1000	1000
Extremely	0.0005	0.05	2000	2000
Rare	0.0002	0.02	5000	5000
Extreme			PMP	

Storm Frequency

For civil engineering design:

- Common frequencies shown
- ARI not used anymore
- AEP preferred terminology

Frequency Descriptor	EY	AEP (%)	Q _y	Typical Use Case	
Very frequent	4	98.17	Q _{3month}	Stormwater quality (WSUD)	
Frequent	1	63.20	Q1	Stormwater longitudinal (pit and pipe), culvert design	
	0.50	39.35	Q ₂		
	0,20	18.13	Q ₅		
Infrequent	0.11	10.00	Q ₁₀		
	0.05	5.00	Q ₂₀	Roofwater design (eaves gutters)	
	0.02	2.00	Q ₅₀	Floodplain management, waterway design, major storm event analysis	
	0,01	1.00	Q ₁₀₀		

Local Standards and Guidelines

Queensland Urban Drainage Manual (QUDM):

- Widely adopted throughout Queensland.
- QUDM's Time of Concentration processes are used across Australia, not just Queensland.

Allows us to calculate how much stormwater will runoff at any given location.

Source: Google 2023

Hydrological method

Estimates peak discharge from rainfall runoff

Used for over 150 years

Based on

- Rainfall intensity
- Catchment area
- Catchment response to runoff

Relies on the following assumptions:

- A storm burst of duration equal to the time of concentration will yield the maximum or peak discharge rate.
- Entire watershed receives uniform rainfall during this time of concentration.

 $2 = \frac{CIA}{360}$

What is Time of Concentration?

The Rational Method Equation

- Q_v Peak flow rate (m³/s) for AEP of 1 in 'y' years
- C_v Coefficient of runoff (discharge) for AEP of 1 in 'y' years
- A Catchment area (ha)
- ^tI_y Average rainfall intensity (mm/h) for a design duration of 't' hours and AEP of 1 in 'y' years
- t Nominal design storm duration defined by time of concentration, t (min)

t = time of concentration

The time it takes for stormwater runoff to travel from the farthest point of the catchment to the outlet.

'Farthest point' refers to time not length.

Time of Concentration Components

- Various components relating to catchment conditions.
- Some components may not be applicable in certain catchments.
- Single or combination of components make up the 'flow path'.

Roof to Main System Connection Kerb Flow

Pipe Flow

Channel Flow

] \$ [

Overland Sheet Flow

Concentrated Overland Flow

Roof to Main System Connection

Roof to Main System Connection

• Rainfall runs off roof, through downpipes into a pipe connection.

Roof to Main System Connection

• Time taken for rainfall to runoff from roof to street.

Roof to Main System Connection

t = 5 minutes

Roof to Main System Connection Kerb Flow

Pipe Flow

Channel Flow

] \$ [

Overland Sheet Flow

Concentrated Overland Flow

Kerb Flow

- Movement of stormwater over the road surface.
- Stormwater accumulates on the road and flows downhill due to gravity.

Kerb Flow

Kerb Flow

$$t = \frac{0.025L}{S^{0.5}}$$

- t Time of gutter flow (min)
- L Length of gutter flow (m)
- S Slope of gutter (%)

Roof to Main System Connection Kerb Flow

Pipe Flow

Channel Flow

] \$ [

Overland Sheet Flow

Concentrated Overland Flow

Pipe Flow

Movement of stormwater through a pipe or conduit.

Common occurrence in urban environments.

Pipe Flow

Pipe Flow

$$t = \frac{L}{60V}$$

- t Pipe flow (min)
- L Pipeline length (m)
- V Pipe velocity (m/s)

Roof to Main System Connection Kerb Flow

Pipe Flow

Channel Flow

] \$ [

Overland Sheet Flow

Concentrated Overland Flow

Channel Flow

Channel Flow

Refers to engineered channels. e.g. table drains, swales.

Channel Flow

Manning's Equation

$$V = \frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$$

- V Average velocity (m/s)
- n Manning's roughness coefficient
- R Hydraulic radius (m)
- S Friction slope (m/m)

Manning's Equation – Rearranged to Solve for Time

$$t = \frac{L}{60V} = \frac{nL}{60R^{\frac{2}{3}}S^{\frac{1}{2}}}$$

- V Average velocity (m/s)
- n Manning's roughness coefficient
- R Hydraulic radius (m)
- S Friction slope (m/m)
- L Length of reach (m)
- t Travel time (min)

Roof to Main System Connection Kerb Flow

Pipe Flow

Channel Flow

] \$ [

Overland Sheet Flow

Concentrated Overland Flow

Overland Sheet Flow

Overland Sheet Flow

Overland Sheet Flow Time

Overland Sheet Flow

Overland Sheet Flow Time

Overland Sheet Flow – Friend's Equation

 $t = \frac{107nL^{0.333}}{S^{0.2}}$

- t Overland sheet flow travel time (min)
- n Horton's surface roughness factor
- L Overland sheet flow path length (m)
- S Slope of surface (%)

Table 4.6.4 – Recommended maximum length of overland sheet flow

Surface condition	Assumed maximum flow length (m)			
Steep (say >10%) grassland	20			
(Horton's n = 0.045)	20			
Steep (say >10%) bushland	50			
(Horton's n = 0.035)	50			
Medium gradient (approx. 5%)	100			
bushland or grassland				
Flat (0–1%) bushland or	200			
grassland	200			

Surface Condition	Horton's n
Paved surface	0.015
Bare soil surface	0.0275
Poorly grassed surface	0.035
Average grassed surface	0.045
Densely grassed surface	0.060

Overland Sheet Flow – Kinematic Wave Equation

$$t = \frac{6.94(Ln^*)^{0.6}}{I^{0.4}S^{0.3}}$$

- t Overland travel time (min)
- L Overland sheet flow path length (m)
- n^{*} Surface roughness coefficient
- I Rainfall intensity (mm/h)
- S Slope of surface (m/m)

Table 4.6.4 – Recommended maximum length of overland sheet flow

Surface condition	Assumed maximum flow length (m)		
Steep (say >10%) grassland	20		
(Horton's n = 0.045)	20		
Steep (say >10%) bushland	50		
(Horton's n = 0.035)			
Medium gradient (approx. 5%)	100		
bushland or grassland	100		
Flat (0–1%) bushland or	200		
grassland	200		

Surface Type	Horton's Roughness Coefficient n*
Concrete or asphalt	0.010 - 0.013
Bare sand	0.010 - 0.016
Gravelled surface	0.012 - 0.030
Bare clay-loam soil (eroded)	0.012 - 0.033
Sparse vegetation	0.053 - 0.130
Short grass paddock	0.100 - 0.200
Lawns	0.170 - 0.480

Roof to Main System Connection Kerb Flow

Pipe Flow

Channel Flow

] \$ [

Overland Sheet Flow

Concentrated Overland Flow

Concentrated Overland Flow

Concentrated Overland Flow (Natural Channel)

Overland sheet flow starts at top of catchment.

After sheet flow reaches limit, flows turn into concentrated channel flow.

Concentrated Overland Flow (Natural Channel)

QUDM Figure 4.5 estimates flow time in channels.

Measure flow distance (length of natural channel) and fall of channel.

Obtain flow time from Figure 4.5.

Multipliers used depending on channel type.

Multiplier	Flow path
1	Kerb and gutter channels
1	Stormwater pipes
1	Open channels
2	Blade-cut earth drains
3	Natural channels
4	Grassed swales

$Q = \frac{CIA}{360}$

Coefficient of Runoff or

Coefficient of Discharge (QUDM)

Coefficient of Runoff

Ratio of total runoff to total rainfall.

Accounts for catchment infiltration and other runoff losses.

Coefficient of Runoff

Low C values tend to reflect pervious areas.

If C = 0.5, 50% of rainfall results in runoff.

Coefficient of Runoff

High C values tend to reflect impervious areas.

If C = 1.0, 100% of rainfall results in runoff.

$Q = \frac{CIA}{360}$

Rainfall Intensity

Rainfall Intensity

Rate of precipitation (rain) falling over a certain period of time.

Expressed as a rate (mm/h) or as a depth (mm).

To obtain Rainfall Intensity, we need:

- Time of concentration
- Storm frequency
- IFD Table

Obtain rainfall intensity from IFD table.

Council may provide IFD or you can download from BOM.

BOM IFD website:

bom.gov.au/water/designRainfalls/revised-ifd/

Duration	Annual Exceedance Probability (AEP)							
Duration	63.20%	50%	20%	10%	5%	2%	1%	
1 min	161.0	182.0	246.0	289.0	331.0	386.0	427.0	
2 min	136.0	153.0	208.0	245.0	283.0	334.0	374.0	
3 min	127.0	143.0	194.0	229.0	264.0	311.0	347.0	
4 min	121.0	136.0	185.0	218.0	250.0	293.0	327.0	
5 min	116.0	130.0	176.0	207.0	238.0	278.0	309.0	
8 min	102.0	115.0	155.0	182.0	208.0	243.0	269.0	
10 min	94.5	107.0	144.0	169.0	193.0	224.0	248.0	
15 min	80.2	90.4	122.0	143.0	163.0	190.0	210.0	
20 min	69.9	78.7	106.0	125.0	143.0	166.0	183.0	
25 min	62.1	70.0	94.5	111.0	127.0	148.0	164.0	
30 min	56.0	63.1	85.3	100.0	115.0	134.0	149.0	
45 min	43.8	49.3	66.8	78.8	90.5	106.0	118.0	
1 hour	36.3	40.9	55.6	65.7	75.7	89.1	99.6	
1.5 hour	27.6	31.1	42.5	50.4	58.3	69.1	77.5	

Trends in data:

• Rainfall intensity will increase as the storm frequency decreases.

Duration	Annual Exceedance Probability (AEP)							
	63.20%	50%	20%	10%	5%	2%	1%	
1 min	161.0	182.0	246.0	289.0	331.0	386.0	427.0	
2 min	136.0	153.0	208.0	245.0	283.0	334.0	374.0	
3 min	127.0	143.0	194.0	229.0	264.0	311.0	347.0	
4 min	121.0	136.0	185.0	218.0	250.0	293.0	327.0	
5 min	116.0	130.0	176.0	207.0	238.0	278.0	309.0	
8 min	102.0	115.0	155.0	182.0	208.0	243.0	269.0	
10 min	94.5	107.0	144.0	169.0	193.0	224.0	248.0	
15 min	80.2	90.4	122.0	143.0	163.0	190.0	210.0	
20 min	69.9	78.7	106.0	125.0	143.0	166.0	183.0	
25 min	62.1	70.0	94.5	111.0	127.0	148.0	164.0	
30 min	56.0	63.1	85.3	100.0	115.0	134.0	149.0	
45 min	43.8	49.3	66.8	78.8	90.5	106.0	118.0	
1 hour	36.3	40.9	55.6	65.7	75.7	89.1	99.6	
1.5 hour	27.6	31.1	42.5	50.4	58.3	69.1	77.5	

Trends in data:

• Rainfall intensity will decrease as the storm duration increases.

Duration		Annual Exceedance Probability (AEP)							
Duration	63.20%	50%	20%	10%	5%	2%	1%		
1 min	161.0	182.0	246.0	289.0	331.0	386.0	427.0		
2 min	136.0	153.0	208.0	245.0	283.0	334.0	374.0		
3 min	127.0	143.0	194.0	229.0	264.0	311.0	347.0		
4 min	121.0	136.0	185.0	218.0	250.0	293.0	327.0		
5 min	116.0	130.0	176.0	207.0	238.0	278.0	309.0		
8 min	102.0	115.0	155.0	182.0	208.0	243.0	269.0		
10 min	94.5	107.0	144.0	169.0	193.0	224.0	248.0		
15 min	80.2	90.4	122.0	143.0	163.0	190.0	210.0		
20 min	69.9	78.7	106.0	125.0	143.0	166.0	183.0		
25 min	62.1	70.0	94.5	111.0	127.0	148.0	164.0		
30 min	56.0	63.1	85.3	100.0	115.0	134.0	149.0		
45 min	43.8	49.3	66.8	78.8	90.5	106.0	118.0		
1 hour	36.3	40.9	55.6	65.7	75.7	89.1	99.6		
1.5 hour	27.6	31.1	42.5	50.4	58.3	69.1	77.5		

Intensity:

- Rate of rainfall (mm/h or mm) Frequency:
- Probability storm may occur in given year at specific location

Duration:

• Length of time storm burst persists

Duration	Annual Exceedance Probability (AEP)						
Duration	63.20%	50%	20%	10%	5%	2%	1%
1 min	161.0	182.0	246.0	289.0	331.0	386.0	427.0
2 min	136.0	153.0	208.0	245.0	283.0	334.0	374.0
3 min	127.0	143.0	194.0	229.0	264.0	311.0	347.0
4 min	121.0	136.0	185.0	218.0	250.0	293.0	327.0
5 min	116.0	130.0	176.0	207.0	238.0	278.0	309.0
8 min	102.0	115.0	155.0	182.0	208.0	243.0	269.0
10 min	94.5	107.0	144.0	169.0	193.0	224.0	248.0
15 min	80.2	90.4	122.0	143.0	163.0	190.0	210.0
20 min	69.9	78.7	106.0	125.0	143.0	166.0	183.0
25 min	62.1	70.0	94.5	111.0	127.0	148.0	164.0
30 min	56.0	63.1	85.3	100.0	115.0	134.0	149.0
45 min	43.8	49.3	66.8	78.8	90.5	106.0	118.0
1 hour	36.3	40.9	55.6	65.7	75.7	89.1	99.6
1.5 hour	27.6	31.1	42.5	50.4	58.3	69.1	77.5

$Q = \frac{CIA}{360}$

Catchment Area

Catchment Area

Determined by:

- Contour maps
- Council records
- Aerial imagery
- Site inspections

Catchment Area

To identify a catchment, need a point of interest.

We can calculate peak discharge rate at any location:

- Gully pit
- Bottom of a hill
- Along a property boundary
- End of a drainage channel

$Q = \frac{CIA}{360}$

Peak Discharge

Peak Discharge

Maximum rate of stormwater runoff at a specific location during a rainfall event.

When we know the maximum flow rate expected, we can calculate:

- Runoff for catchments
- Inlets and pipe systems
- Drainage channels
- Road capacity
- Flooded widths, depths
- Freeboard to buildings

The Rational Method Equation

$$Q_y = \frac{C_y {}^t I_y A}{360}$$

- Q_v Peak flow rate (m³/s) for AEP of 1 in 'y' years
- C_v Coefficient of runoff (discharge) for AEP of 1 in 'y' years
- A Catchment area (ha)
- ^tI_y Average rainfall intensity (mm/h) for a design duration of 't' hours and AEP of 1 in 'y' years
- t Nominal design storm duration defined by time of concentration, t (min)

Time for some calculations

Rational Method

Catchment

- 1. Identify point of discharge / interest
- 2. Draw catchment contributing to runoff at point of interest
- 3. Measure catchment area
- 4. Measure fraction impervious

Time of Concentration

- 1. Identify all time of concentration components
- 2. Choose a flow path (or multiple paths if unsure of longest travel time)
- 3. Calculate each time component
- 4. Add all components to obtain time of concentration for catchment

Intensity Frequency Duration (IFD) Table

- 1. Obtain catchment location (latitude longitude)
- 2. BOM IFD website bom.gov.au/water/designRainfalls/revised-ifd/
- 3. Set units to 'mm/h'

Rainfall Intensity (IFD Table)	
1. Identify storm frequency needed e.g. 190 AEP	
2. Identify time of concentration	
3. Obtain rainfall intensity for your specific design storm	
(storm frequency and burst duration) ${}^{+}\mathrm{I}_{\mathrm{y}}$ mm/h	
Coefficient of Runoff	
1. Fraction impervious fi	
2. Rainfall intensity for 1 hour 10% AEP ${}^{1}I_{10}$ (mm/h)	
3. Obtain C_{10} value based on f_i and ${}^1I_{10}$	
QUDM or Council will provide this table.	
4. Frequency factor for design storm F_y	
5. Calculate C_y for design storm	
$C_{\nu} = F_{\nu}C_{10}$	
y y 10	
Rational Method Peak Discharge	
1. Calculate Peak Discharge	
0 - CIA/360	
Q — CIII, 500	

Example 1: Gully Pit

Calculating peak discharge at a stormwater gully pit.

Design storm:

- Storm duration = time of concentration
- Storm frequency = 39% AEP or 0.5EY or 2 year ARI or Q₂

Catchment

- 1. Identify point of discharge / interest
- 2. Draw catchment contributing to runoff at point of interest
- 3. Measure catchment area
- 4. Measure fraction impervious

Catchment area, A = 0.6317haFraction impervious, $f_i = 3790m^2 / 6317m^2 = 0.60$

Time of Concentration

Draw flow path that would result in the longest time.

Roof to main system connection

t = 5 minutes

Kerb flow

L = 125m S = 4%

 $t = \frac{0.025L}{S^{0.5}}$

+ = (0.025*125)/4^{0.5} = 1.6min

Total time of concentration for catchment is:

Roof to main connection time + kerb flow time

t = 5 + 1.6 = 6.6 = 7 min

Rational Method needs to adopt a storm burst of 7 minutes.

Intensity Frequency Duration (IFD) Table

- 1. Obtain catchment location (latitude longitude)
- 2. BOM IFD website bom.gov.au/water/designRainfalls/revised-ifd/
- 3. Set units to 'mm/h'

Design Rainfall Data System (2016)

Conditions of Use | Help | New IFD feedback

(Search	About the 2016 Design Rainfalls						
Single Point	The 2016 design rainfalls provided h	iere are:					
Decimal degrees Latitude: -27.3 Longitude: 153	 based on a more extensive database, with more than 30 years of additional rainfall data and data from extra rainfall stations; more accurate estimates, combining contemporary statistical analysis and techniques with an expanded rainfall database; and better estimates of the 2% and 1% annual exceedance probability design rainfalls than the interim 2013 IFDs. extended to include the cubdally rare design rainfalls. 						
O Degrees, Minutes, Seconds	By combining contemporary statistic	al analyses and techniques with an expanded database, the 2016					
$^{\bigcirc}$ Easting, Northing, Zone	design rainfalls provide more accurate design rainfall estimates for Australia.						
Label 3	Note: The 2016 IFDs replace bot	h the ARR87 IFDs and the interim 2013 IFDs.					
Submit Map Preview	The ARR 87 IFDs will be available <u>he</u>	<u>re</u> until June 2020.					
Select Design Raiv	nfalls needed	Design Rainfalls					
e.g. IFD values.		 Very Frequent IFDs (Frequent and Infrequent) 					
,		O Rare					
Add non-standard	duration if	- Non-Standard Durations					
required e.g. 7 miv	n. duration	Duration: 7 minutes 🗸 🕂					

We will need two values: ${}^{1}I_{10}$ (for Coefficient of Runoff) and ${}^{7}I_{2}$ (for Q_{2} Peak Discharge)

Table Chart

Unit: mm/h 🗸

	Exceedance per Year (EY)								
Duration	12EY	6EY	4EY	3EY	2EY	1EY	0.5EY#	0.2EY*	
1 <u>min</u>	65.2	76.1	94.9	108	127	161	202	251	
2 <u>min</u>	58.2	67.2	82.2	93.0	108	136	170	212	
3 <u>min</u>	54.0	62.5	76.8	87.0	102	127	159	198	
4 <u>min</u>	50.6	58.7	72.6	82.5	96.5	121	151	188	
5 <u>min</u>	47.6	55.5	68.9	78.5	92.1	116	145	180	
7 <u>min</u>	42.7	50.1	62.7	71.7	84.3	106	133	165	

Rainfall intensity ${}^{7}I_{2} = 133$ mm/h

Annual Exceedan	nce Prob	ability (A	EP)								
		Annual Exceedance Probability (AEP)									
Duration 63.2% 50%# 20%* 1	10%	5%	2%	1%							
1 hour 36.3 40.9 55.6	65.7	75.7	89.1	99.6							

Coefficient of Runoff													
Now we can obtain C_{10} based on f_i and $^1\mathrm{I}_{10}$													
$f_i = 0.60$)	1T	10 = 65	.7mm//	ן								
Intens	sity			Fraction in	npervious f _i								
(mm/nr) I ₁₀	0.20	0.40	0.60	0.80	0.90	1.00						
39-4	4	0.44	0.55	0.67	0.78	0.84	0.90						
45-4	19	0.49	0.60	0.70	0.80	0.85	0.90						
50-5	54	0.55	0.64	0.72	0.81	0.86	0.90						
55-5	59	0.60	0.68	0.75	0.83	0.86	0.90						
60-6	64	0.65	0.72	0.78	0.84	0.87	0.90						
65-6	59	0.71	0.76	0.80	0.85	0.88	0.90						
70-9	0	0.74	0.78	0.82	0.86	0.88	0.90						
0 0	0.0	•	•		•		•						

 $C_{10} = 0.80$

Then we multiply this by our Frequency Factor to calculate our C_2 value.

		ARI	Frequency
	AEP (%)	(years)	factor (F _y)
	63%	1.00	0.80
	39%	2.00	0.85
	18%	5.00	0.95
	10%	10.00	1.00
	5%	20.00	1.05
	2%	50.00	1.15
	1%	100.00	1.20

$C_y = F_y C_{10}$
$C_2 = 0.85 \times 0.80 = 0.68$
Now we have all our variables needed.
Rational Method Peak Discharge
$Q_y = \frac{C_y t_{IyA}}{360}$
Peak discharge Q = CIA/360 (m^3/s)
$Q_2 = (C_2 T_2 A)/360$
$Q_2 = (0.68*133*0.6317)/360$
$Q_2 = 0.159 \mathrm{m^3/s}$

Example 2: Inter-allotment Drainage

Calculating peak discharge at the outlet of a stormwater piped network.

Design storm:

- Storm duration = time of concentration
- Storm frequency = 39% AEP or 0.5EY or 2 year ARI or Q₂

Catchment

- 1. Identify point of discharge / interest
- 2. Draw catchment contributing to runoff at point of interest
- 3. Measure catchment area
- 4. Measure fraction impervious

Catchment area, A = 0.1870haFraction impervious, $f_i = 1122m^2 / 1870m^2 = 0.60$

Time of Concentration

Draw flow path that would result in the longest time.

- Roof to main system connection
 - t = 5 minutes

Pipe flow

- We haven't modelled the stormwater flows through
- the piped system, so we don't know the actual pipe
- velocity. QUDM suggests:
- Low gradient pipes, pipe velocity = 2m/s
- Medium to steep gradient pipes, pipe velocity = 3m/s

Intensity Frequen	ncy Duration (IFD) Table
1. Obtain catchn	nent location (latitude longitude)
2. BOM IFD we	bsite bom.gov.au/water/designRainfalls/revised-ifd/
3. Set units to 'v	mm/h
Design Rainfall Data	a System (2016) <u>Conditions of Use Help</u> <u>New IFD feedback</u>
() Search	About the 2016 Design Rainfalls
Single Point	The 2016 design rainfalls provided here are:
Decimal degrees Latitude: -27.3 Longitude: 153	 based on a more extensive database, with more than 30 years of additional rainfall data and data from extra rainfall stations; more accurate estimates, combining contemporary statistical analysis and techniques with an expanded rainfall database; and better estimates of the 2% and 1% annual exceedance probability design rainfalls than the interim
O Degrees, Minutes, Seconds	2013 IFDs. • extended to include the subdaily rare design rainfalls. Properties and the subdaily rare design rainfalls.
© Easting, Northing, Zone	By combining contemporary statistical analyses and techniques with an expanded database, the 2016 design rainfalls provide more accurate design rainfall estimates for Australia.
Label 🕄	Note: The 2016 IFDs replace both the ARR87 IFDs and the interim 2013 IFDs.
	The ARR 87 IFDs will be available <u>here</u> until June 2020.
Submit Map Preview	
Select Design Rain	Ifalls needed Design Rainfalls
e.g. IFD values.	 Very Frequent IFDs (Frequent and Infrequent) Rare
Add non-standard	- Non-Standard Durations
required e.g. 6 min	1. duration: 6 minutes ~ +

We will need two values: ${}^{1}I_{10}$ (for Coefficient of Runoff) and										
GI_2 (for Q_2 Peak Discharge)										
Table Chart Unit: Im										
Exceedance per Year (EY)										
Duration	12EY	6EY	4EY	3EY	2EY	1EY	0.5EY#	0.2EY*		
1 <u>min</u>	65.2	76.1	94.9	108	127	161	202	251		
2 <u>min</u>	58.2	67.2	82.2	93.0	108	136	170	212		
3 <u>min</u>	54.0	62.5	76.8	87.0	102	127	159	198		
4 <u>min</u>	50.6	58.7	72.6	82.5	96.5	121	151	188		
5 <u>min</u>	47.6	55.5	68.9	78.5	92.1	116	145	180		
6 <u>min</u>	45.0	52.6	65.7	74.9	88.0	111	138	172		
Rainfal	lintens	sity GI	= 139	3mm/V)					
		1 - 2								
Table Chart Unit: mm/h ∨										
			Ann	ual Exceed	lance Prob	ability (AEP)			
Duration	63.2%	50%#	20%*	10%	5%	2%	1%			
1 hour		36.3	40.9	55.6	65.7	75.7	89.1	99.6		
Rainfal	lintens	sity ${}^{1}\text{I}_{1}$	0 = 65	.7mm/l	1					

Coefficient of Runoff										
Now we can obtain C_{10} based on f_i and $^1\mathrm{I}_{10}$										
$f_i = 0.60$ ${}^1I_{10} = 65.7 \text{mm/h}$										
Intensity Fraction impervious f _i										
	(mm/hr) ⁻ 1 ₁₀	0.20	0.40)	0.60)	0.80	0.90	1.00	
	39-44	0.44 0.55			0.67	,	0.78	0.84	0.90	
	45-49	0.49	0.60)	0.70)	0.80	0.85	0.90	
	50-54	0.55	0.64	ŀ	0.72	2	0.81	0.86	0.90	
	55-59 0.60 0.68 0.75 0.83 0.86 0.90									
	60-64	0.65	0.72	2	0.78	;	0.84	0.87	0.90	
	65-69	0.71	71 0.76		0.80		0.85	0.88	0.90	
70-90 0.74 0.78 0.82 0.86 0.88 0.90										
С	$C_{10} = 0.80$									
T	hen we mi	nltiph	1 this k	γc	our F	re	quency	Factor	to calcu	ilate
0	ur C2 value	2.								
	L									
					ARI	Fr	requency			
			AEP (%)	()	/ears)	fa	actor (F _y)			
			63%		1.00		0.80			
			39%		2.00		0.85			
			18%		5.00		0.95			
			10%		L0.00		1.00			
			5%	2	20.00		1.05			
			2%	5	50.00		1.15			

1%

100.00

1.20

$C_y = F_y C_{10}$

 $C_2 = 0.85 \times 0.80 = 0.68$

Now we have all our variables needed.

Rational Method Peak Discharge

 $Q_y = \frac{C_y{}^t I_y A}{360}$

Peak discharge $Q = CIA/360 (m^3/s)$

 $Q_2 = (C_2 \,^6 I_2 \, A)/360$

 $Q_2 = (0.68*138*0.1870)/360$

 $Q_2 = 0.049 \text{m}^3/\text{s}$

Here are common problems we encounter in the industry:

- Pre-developed & post-developed analysis
- External catchments
- Sensitivity analysis
- Partial area effect
- Limitations of the Rational Method
- What to do when Rational Method is not suitable

If these sound familiar but you're not 100% confident in calculating, get in touch and we can teach you.

Want to learn more?

We can help with:

- Free consultations
- Online self-paced learning
- Coaching
- Face-to-face workshops
- In-house training delivery

info@quiltyenghub.com

linkedin.com/in/seanquiltycpeng

quiltyenghub.com

