Laboratory Analysis of Stormwater Control Measure Mass Load Capacity and Long-Term Performance

Ocean Protect Webinar- Craig Fairbaugh - 7/28/22

Background

Stormwater: only major source of surface water pollution that is increasing in the U.S¹

Stormwater Control Measures (SCM)

- Bioretention (BRT)
- High Rate Biofiltration (HRBF)

Midwest bioretention cell².

Expiration Date: January 30, 2016 Permit Number: 101314 File Number: 108015

Background

Numeric reduction targets

80% Total Suspended Solids (TSS) removal

Performance Verification

- Public domain devices academic research based
- Manufactured Treatment Devices (MTDs)
 - Testing protocols
 - ▶ WA Dept Ecology TAPE⁴ field
 - ► NJ DEP⁵ lab

STEPP⁶

 ASTM Committee E64 on Stormwater Control Measures⁷ NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM MUNICIPAL SEPARATE STORM SEWER SYSTEM (MS4) DISCHARGE PERMIT

> Oregon Department of Environmental Quality 811 SW Sixth Ave., Portland OR 97204-1390 Telephone: 503-229-5630

Issued pursuant to Oregon Revised Statute 468B.050 and the Federal Clean Water Act

ISSUED TO: City of Portland Port of Portland SOURCES COVERED BY THIS PERMIT:

This permit covers all existing and new discharges of stormwater from the Municipal Separate Storm Sewer System (MS4) within the City of Portland Urban Services Boundary.

COUNTY: Multnomah

RECEIVING WATERBODIES: Basin(s): Willamette River, Columbia River Sub-basin(s): Lower Willamette River, Columbia Slough, Tualatin River

City of Portland Municipal Separate Storm Sewer Permit (MS4)³.

http://nationalstormwateralliance.org/stepp/

Background

- Q: What about achieving pollutant reduction over time?
- A: maintenance
- Q: How do we enforce and test systems for maintenance?

Bioretention system with clogged media and standing water⁸.

Background

- NJDEP sediment loading protocol
 - Allen et al., 2020: TAPE vs NJDEP
- Need additives to better represent constituents in real stormwater?

	Approved Hydraulic Loading Rate	
Technology Namo	TAPE Basic	NJDEP 80 % TSS
recimology Name	Treatment	Removal
	GULD	Certification
BayFilter Enhanced Media Cartridge	0.5	0.5
Kraken Stormwater Filtration System	0.05	0.05
PerkFilter Media Filtration System	1.5	2.54
Up-Flo Filter with 285R Filter Ribbon Media	0.8	1.26
BioPod Biofilter with StormMix Media	1.6	1.8
Filterra Bioretention System	1.82	1.45
Filterra HC	-	3.11

Comparison of certified hydraulic loading rates for filtration manufactured treatment devices9

Objective

Determine the effects that synthetic stormwater made from silica, organics and motor oil have on SCM mass load capacity versus just silica sediment alone.

City of Portland bioretention planter¹¹.

High rate biofilter, Bellingham, WA¹².

HRBF experimental setup

- 2014 Contech Filterra NJDEP report¹³ as baseline
- Engineered media from Contech
- 21" engineered media, 4" stone, 3" mulch
- Hydraulic loading rate = 140"/hr (1.56 gpm/ft²)
- 9" design ponding depth above media surface

HRBF experimental setup

- Peristaltic pumps
- Slurry tank w/pump (sediment mixing)
 - 2 mixers
 - Recirculation pump
- Source water tank w/pump
- Oil trials = oil pump
- Influent: Seametrics flow meter + data logger
- Effluent: timed bucket

BRT experimental setup

- COP SW-231 (Presumptive Approach)¹⁴
- 24" media, 10" stone
 - 60/40 Sand-compost
 - Raised outlet 4" IWS
- 3" mulch (not required by COP)
- 6"/hr media rate (0.06 gpm/sf)
- 12" design ponding depth above media surface
- Santa Barbara Urban Hydrograph (SBUH) runoff method and HydroCAD model
- Drainage area = 840 sf

SW-231 planter design (BES, 2020).

BRT column design hydrograph utilizing media exfiltration rate of 6"/hr (constant velocity).

BRT experimental setup

Bioretention stone and 1st lift of media.

Bioretention media and mulch installed.

Bioretention experimental test setup.

BRT media sourcing: COP Stormwater Facility Blended Soil Vendor & Hauler List¹⁵

August 2021

December 2021

Methods: NJDEP Filter Protocol¹⁶

Removal Efficiency trials

10 trials at MTFR

- "maximum treatment flow rate"
- Influent TSS = 180-220 mg/L
 - ► COV ≤ 0.10
- Effluent TSS: grab sample
 - Min 5 effluent samples per trial
 - ► 500 mL minimum
- 80% TSS removal efficiency
- Known influent volume
- Known influent mass

Sediment Loading trials

- Conduct trials until "failure"
 - Sediment mass loading vs RE
 - Sediment mass loading vs head loss at MTFR
 - Sediment mass loading vs effluent flow rate
- Influent TSS = 360-440 mg/L
 - ► COV ≤ 0.10
- Effluent TSS: grab sample
 - ▶ 3 effluent samples per trial
 - ▶ 500 mL minimum
- Known influent volume
- Known influent mass

NJDEP test sediment spec

- "hard, firm, inorganic"
- Specific gravity = 2.65
- Uniformly distributed
- 🕨 d50 = 75 μm
- ▶ d20 = 8 µm

AGSCO test sediment

- Inorganic silica
- ▶ d50 = 60 µm

▶ d20 = 9 µm

Organic test sediment concentration

- Median TVSS:SSC
 - Average = 30.8%
 - SSC more representative of ASTM D3970 (vs TSS)
- Target = 70% silica:30% compost

Organic test sediment source:

Cedar Grove compost¹⁸

- Ecology certified, etc.
- 55.9% organic matter by weight
- ~30% compost -> ~15% organic content
- Cap compost at 30% to try and retain NJDEP PSD

Portland State

Cedar Grove compost specification (2018).

Organic test sediment: Standard of Practice (SOP)

- Wet sieve < 1000 µm</p>
- > 24 hr settling period
- Decant aqueous volume
- Rinse sludge with DI
- Dry for 24-48 hrs @ 100°C
- ► Weigh sample until ∆ mass < 0.1 g

Sieved compost test sediment and rinse water.

Sieved compost solids after decanting rinse water.

- How does organic matter affect PSD?
- Hydrometer sieve method

Hydrocarbon concentration

- National Stormwater Quality Database^{18:} Sites <20 acres</p>
- Total petroleum hydrocarbons (TPH)
 - Mean = 5.6 mg/L; Median = 5.7 mg/L
- Oil & Grease
 - Mean = 7.1 mg/L; Median = 5.3 mg/L
- Target concentration = 7 mg/L

Hydrocarbon source

- Shell 5W-30 motor oil
 - ► SG = 0.88 (60°F)

HRBF-1: Inorganic

▶ 69 trials

- 9" ponding @ trial 69
- 16,650 gal treated
- 63.1 lbs treated
 - ▶ 22.9 lbs/ft²
- Avg Inf TSS = 478.8 mg/L
- Avg TSS RE = 77.2%
- Differences vs 2014 Filterra?
 - ► Higher influent TSS
 - Auger vs slurry tank

Portland State

- ► 13 trials
- 9" ponding @ trial 13
- 2,202 gal treated
- 5.3 lbs treated
 - ▶ 1.9 lbs/ft²
- Avg Inf TSS = 426.3 mg/L
 - 23% compost
 - ► 3rd party lab: 17% TVSS:TSS
- Avg TSS RE = 90.3%
- Oil loading = 22.9 g/ft²

<u>HRBF-1 Inorganic vs</u>

<u>HRBF-2</u> Inorganic/Organic/Oil

- Both trials concluded @
 9" bypass
- 22.9 lbs/ft² vs 1.9 lbs/ft²
- Adding oil and organics decreased mass capacity

ENGINEERED SOLUTIONS

BRT-1 Inorganic

- 117 trials
- No failure
 - Approx 30% PDX annual rainfall
 - ► Max ponding = 3"
- 6,479 gal treated
- 24.0 lbs treated
 - 1.8 lbs/ft²
- Avg Inf TSS = 427.8 mg/L
- Avg TSS RE = 97.9%

<u>BRT-2</u> Inorganic/Organic/oil

- 31 trials
- <90% Effluent MTFR</p>
- <80% TSS Removal</p>
 - Compost flushing
- 1,508 gal treated
- 5.2 lbs treated
 - ▶ 0.39 lbs/ft²
- Avg Inf TSS = 453 mg/L
- Avg TSS RE = 80.6%
- Oil loading = 2.99 g/ft²

<u>BRT-2</u> Inorganic/Organic/Oil

- 31 trials
- <90% Effluent flow rate failure
- <80% TSS Removal</p>
 - Compost flushing
- 1,508 gal treated
- 5.2 lbs treated
 - ▶ 0.39 lbs/ft²
- Avg Inf TSS = 449 mg/L
- ► TSS RE = 80.6%
- Oil loading = 2.99 g/ft²

BRT-1 Inorganic vs

BRT-2 Inorganic/Organic/Oil

- No bypass
- BRT-1 headloss
 - ▶ 3" ponding @ 1.8 lbs/ft²
- BRT-2 headloss
 - 3" ponding @ 0.37 lbs/ft²
- BRT-2 max ponding > BRT-1 max ponding
- Adding oil and organics decreased mass capacity

Portland State

Results: Flushing

- BRT-1 lowest V
- HRBF-2 & BRT-1
 - ▶ ≥90% TSS RE
- HRBF low turbidity
- BRT-2 QA/QC
 - 7 lbs TSS leached?

BRT-2 flushing samples 3 and 4.

System	Flushing volume (gal)	Turbidity (NTU)	Media Volume (cf)	Flushing Volume per Media Volume (gal/cf)
HRBF-1	249.82	13.5	4.83	51.7
HRBF-2	220.43	9.92	4.83	45.6
BRT-1	999.57	17.8	22.93	43.6
BRT-2	2000	254	22.93	87.2

BRT and HRBF flushing volume and turbidity results.

BRT-2 Flushing Sample	Flushing Volume (gal)	TSS (mg/L)	Estimated Cumulative Flushing Load (lbs)
1	0	702	-
2	1000	490	4.97
3	1608	161	1.65
4	1951	89	0.36

BRT-2 TSS vs flushing volume.

BRT-2 flushing volume TSS results.

Results: Additional discussion

- ▶ BRT-1 & BRT-2 discolored effluent
- Bioretention phosphorus leaching
 - Ecology 2013¹⁹
 - Ecology 2021²⁰
 - ► BMP database^{21,22}
- Effluent total P
 - Min = 0.892 mg/L
 - Max = 3.80 mg/L
 - Mean DP:TP = 84%
- ► TAPE TP influent = 0.1-0.5 mg/L
 - ▶ 50% total P removal
 - TP effluent = 0.05-0.25 mg/L
- BRT column P leaching: orders of magnitude higher than TAPE effluent values

Healthy Plants = Water Quality?

Engineered media = Water Quality

EWRI Stormwater Media Filtration Committee

Conclusions

- Mass load capacity is <u>lower</u> when adding organics and oil to silica test sediment
 - NJDEP filter protocol laboratory results likely overestimate mass capacity
- Annual mass retained and typical maintenance intervals need more data
- BRT media stability is variable and demonstrated significant leaching of solids and nutrients
 - Better media QAQC likely to improve removal efficiency and loading results
- Alternative media specifications with less compost can reduce nutrient export

Portland St

Next Steps?

- Standard methods needed for including organic test sediment and hydrocarbons to laboratory test sediment
 - ► ASTM E64 committee
- How do varying concentrations of organics and oil affect mass load capacity?
- Does accelerated lab testing of nonvegetated systems represent RE and mass load capacity of in-situ vegetated systems?
- BRT mass load capacity without mulch?
- Does typical maintenance restore system performance?

References

- 1. https://nationalstormwateralliance.org/
- 2. https://bluegrasslawn.com/msd-bio-retentio
- 3. https://www.portlandoregon.gov/bes/37485
- 4. https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies
- 5. https://www.nj.gov/dep/stormwater/ treatment.html#:-:text=Stormwater%20Manufac tured%20Treatment%20Devices, the%20requirements%20for%20major%20development.
- 6. http://nationalstormwateralliance.org/stepp/
- 7. https://www.astm.org/get-involved/technical-committees/committee-e64/subcommittee-e64
- 8. https://stormwater.pca.state.mn.us/index.php?title=File:Failing_BMP_1.jpg
- 9. Allen, V.; Berg, D.; Fairbaugh, C.; 2020. "Improving post-construction stormwater management program results through incorporation of performance verification standards for stormwater control measures." WEFTEC 2020 Conference proceedings.
- 10. https://www.neponset.org/wp-content/uploads/2011/12/oil-runoff-into-storm-drain-e1440173641920.jpg2020
- 11. https://www.urbangardensweb.com/2009/11/01/growing-green-streets-to-go-with-the-flow/portland-green-streets-5/
- 12. http://www.njcat.org/uploads/newDocs/FilterraVerificationReportFinal.pdf
- 13. http://www.njcat.org/uploads/newDocs/FilterraVerificationReportFinal.pdf
- 14. https://www.portland.gov/bes/stormwater/swmm
- 15. https://www.portlandoregon.gov/bes/article/582089
- 16. https://www.nj.gov/dep/stormwater/pdf/Filter_Protocol_Final_2022_01_14.pdf
- 17. https://cedar-grove.com/docs/Organic_compost_quarterly_10-15-2018_QA.pdf
- 18. https://bmpdatabase.org/national-stormwater-quality-database
- 19. https://apps.ecology.wa.gov/publications/SummaryPages/1310017.html
- 20. https://apps.ecology.wa.gov/publications/documents/2110023.pdf
- 21. https://static1.squarespace.com/static/5f8dbde10268ab224c895ad7/t/5fbd3c237ad3fe66120f69ea/1606237239545/2016_BMPDBSummaryStatistics_03-SW-1COh.pdf
- 22. https://www.waterrf.org/resource/international-stormwater-bmp-database-2020-summary-statistics

Thank you! <u>Craig.Fairbaugh@ContechES.com</u>

<u>https://pdxscholar.library.pdx.</u> edu/open_access_etds/5926/

