Ocean Protect Seminar – April 28, 2022

Designing Bioretention: Mid-Atlantic USA Style

Bill Hunt, PhD, PE WNR Professor & Extension Specialist NC State University

Nice to be "back" in Oz!

NC: Neuse Estuary, 1990's

Neuse (NC) Stormwater Rules

- Buffer rule enacted July 1997
- Stormwater rules enacted August 1999
 - New development N loading @ 3.6 lbs N/acre, no peak flow increase from 1 yr storm
 - Illegal discharge i.d. and removal
 - Retrofit i.d.
 - Public education
 - Reporting requirements
 - Trading (offset payments) allowed

This is a short(?), audience participatory presentation

Project Needs/ Goals Design Elements

Bill's Guesses: Goals

- Qp mitigation
- LID Hydrology/ Runoff Vol reduction
- TSS removal
- TN removal
- TP removal
- Thermal control
- Pathogen sequestration
- Price Tag

- Be Pretty
- Comply with
 Landscape Ordinances
- Carbon sequestration
- Trap Metals
- Function in Perpetuity
 (Maintenance)
- Be loved & accepted by all/ World Peace

Further Hunt Guesses: Design Elements

- Surface Area
- Bowl Storage
- Outlet Structure
- Vegetation Type & Coverage
- Media Depth
- Media Type
- Underdrainage need & configuration
- Pre-treatment
- Underlying soil & SHWT

Now, Let's tackle these.

Brett Davis-USA TODAY Sports

Minimum Design Criteria for **Bioretention**

(1) SEPARATION FROM THE SHWT

- The bottom of bioretention cells Min. of 0.6m above the SHWT.
- However, the separation can be relaxed to 0.3m when the applicant can prove that the water table will subside to its pre-storm elevation in five days or less.

How Important Is This for Pollutant Reduction? Case Study

Sign of the "BRC Apocalypse"

BRC Intersected the Water Table

Percent Removal" Provided by SCM Treatment Train of Stormwater Pollutants

	TN	ТР	TSS
Storm Events Only	49%	51%	89%
Base Flow Included	-64%	30%	87%

(2) MAXIMUM PONDING DEPTH FOR DESIGN VOLUME

• The maximum ponding depth for the design volume shall be 0.3m above the planting

surface.

• But...

(3) PEAK ATTENUATION DEPTH

- Peak attenuation volume stored - up to 0.6m above the planting surface.
- The peak attenuation outlet shall be a maximum of 0.45m above the planting surface.

(10) UNDERDRAIN

- Internal water storage underdrain required
 - Unless Underlying Soil has >50 mm/hr infiltration rate
 - The internal water storage zone shall extend to a minimum of 0.45m below the planting surface.

Looking down into the Catch Basin (upturned elbow)

Internal Water Storage (embedded in media)

Employing an IWS in Oz. Called: "Saturated Zone"

For Example...

Water Balance

Modelling Impact of IWS

• ...Without

Modelling Impact of IWS (With)

(4) Media Depth

(4) MEDIA DEPTH

All grassed cells with no internal water storage:
 24 inches (0.6m)

(4) Media Depth

- Grass Cells WITH Internal Water Storage
 - Accounts for most of them
- 0.75m

(4) MEDIA DEPTH

• All tree/shrub cells: **0.9m**. (IWS or otherwise)

(5) MEDIA MIX

- Homogeneous soil mix
- Approximate volumes of:
 - 75 to 85 percent medium to coarse washed sand (ASTM C33)
 - 8 to 12 percent fines (silt and clay)
 - 5 to 15 percent organic matter (such as pine bark fines).

(5) MEDIA MIX

- Homogeneous soil mix
- Approximate volumes of:
 - 75 to 85 percent medium to coarse washed sand (ASTM C33)
 - 8 to 12 percent fines (silt and clay)
 - 5 to 15 percent organic matter (such as pine bark fines).
- If total nitrogen is the target pollutant, it is recommended to use 10 to 15 percent fines in the media mix.

(6) MEDIA P-INDEX

 The phosphorus index (P-index) for the media shall not exceed 30 in NSW waters and shall not exceed 50 elsewhere.

Greensboro Battleground Ave

Chapel Hill Univ. Mall

Initial NCSU Research

• Relationship between P-Index (Soil Test P) and TP outflow load.

	Greensboro	Chapel Hill
TP	+240%	- 65%
P-Index	85-100	4-12

(Hunt 2003)

P-Index 50-100: High P-Index 0-25: Low

NCDA&CS Age	ronomic	Division	Phone	: (919)73	3-2655	Web	site: ww	w.ncag	r.gov/ag	ronoml/							Report	No: 06	5381		
Field Informa	ation		Applie	d Line	Recomm	nenda	tions														
Sample No.	Las	1 Crop	1.0		2	car		\mathbf{a}	C 1		ρ	Pr	nh	Ρ	m	64	Zes	В	Mit	See Note	1
					. Samp	Fe	G. G. G. Martin	u.			120-200	<u>9</u> -50					0	.0	pH\$	12	
					2nd Grop:	Fe	15/0G/Tim	М.			120-200	30-50	0		0 0	0	0	.0	pH\$	12	
Test Results																					
Soft Class	HM%	W/V 1.05	CEC 10.3	BS% 90.0	Ac 1.0	рН 6.5	<i>P-1</i> 40	K-J 176	Ca% 69.0	Mg% 12.0	Mn-1 309	Mn-AI(1) 195	Mn-AI(2) 195	Zm-1 56	Zn-AI 56	64-1 32	S-1	SS-1	I NO3-N	NH4-N	Na 0.1
Field Informa	ation		Applie	ed Lime	Recomm	nenda	tions														
Sample No.	Las	t Crop	Mo	Yr T/A	Crop or	Year			1	Unio	N	P205	K20	М	e s	Cış	Zes	B	Ma	See Note	,
					1st Grop:	Fe	s/0G/Tim	,M			120-200	10-30	40-60	0	0 (0	0	.0	0	12	
					2nd Grop:	Fe	as/OG/Tim,	м			120-200	10-30	40-60	0	0 0	0	0	.0	0	12	
Test Results						1.1	-														
Soll Class	HM%	W/V 1.04	CEC	ю. П	1.64	12/7	OG(hц	ųM,		W-1 85	Mn-AI(1) 68	Mn-AI(2) 68	Z#-1 65	Zn-AI	Cu-1	S-1	SS-1	I NO3-N	NH4-N	Na 0.1
Field Inform	ation		Applie						12		-										
Sample No.	Las	t Crob	Mo								N	P205	K20	М	E S	CN	Zes	B	Ma	See Note	,
3		<u> </u>									20-200	0	0	0	0	0	0	.0	0	12	
											20-200	0	0	6	0	0	0	.0	0	12	
Test Results			- 25	- b .	H .		$P_{\rm el}$	Γ.		K-i	-										
Soll Class	HM%	W/V	CEC	- 67			- C				11-1	Ma-AI(1)	Mn-Al(2)	Zn-I	Zet-AI	Cu-I	S-1	SS-	NO3-N	NH4-N	Na
100000000000000000000000000000000000000		0.92	8.8	- 5			12	9 - I		10	191	192	192	321	321	40					0.1
Field Inform	ation		Applie		• •		1.0	e		1.00											
Sample No.	Las	t Crop	Mo								N	P205	K20	M	g S	Caj	Zes	B	Ma	See Note	,
				me.	nda	FI C	nns.				20-200	20-40	0	0	0 0	\$	0	.0	0	12	
e			3		- square						20-200	20-40	0	0	0 0	\$	0	.0	0	12	
Test Results				12.																	
Soll Class	HM%	W/V	CEC	10	ar -						n-I	Mn-Al(1)	Mn-Al(2)	Zn-I	Zn-AI	Cu-I	S-1	SS-	I NO3-N	NH4-N	Na
Field Inform	atlan	0.94	0./								61	00	00	91	91	-27					0.1
Comble No.	Iar	1 Cash	Ma	Ve T/4	Coat an	Vean	uons			linie	N	P:Or	K-0	M		64	7.4	p	Ma	See Nate	
Survivor 110.	2.45	. crop			Int Crock	E-	a/06/Tim	м			120.200	10.10	10.50	1		0	0	0	0	12	
					2nd Green	Fe	a/06/Tim	M			120.200	10.50	10.50		0	ő	0	.0	0	12	
Test Results			0.0		The state		a a a a a a a a a	-								•	•				
Soll Class	HM%	W/V	CEC	BS%	Ac	þН	P-I	K-I	Ca%	Mg%	Mn-I	Ma-Al(1)	Mn-Al(2)	Zn-I	Zn-AI	Cy-I	S-1	SS-	I NO3-N	NH4-N	Na
0		1.09	7.2	65.0	2.5	5.1	54	62	49.0	13.0	355	230	230	320	320	28					0.1

Aside: Can Compost Be Used in SCMs?

- Yes, but...
- Remember, SCMs are water quality and quantity treatment devices, NOT landscape features
- Compost can have very high nutrient levels
- Use compost to remediate poor soils, do not use inside SCMs

(7) NO MECHANICAL COMPACTION

- The media shall not be mechanically compacted.
- It is recommended to either water it or walk on it as it is placed.

(8) MAINTENANCE OF MEDIA

• A drawdown of at least 25mm/h at the planting surface must be maintained.

24 h post-Rain Event.... Uh oh!!!

Slide 43

B1 Bill, 11/10/2015

Keep Off! – Post Construction Compaction

Modified Philip-Dunne Infiltrometer

Test in Action

The REAL Key Point

 Over compaction will require removal and reinstallation of the media material.

(9) PLANTING PLAN

- Achieve 50% coverage with either:
- Canopy, ground cover, or a combination of canopy and ground cover
- At five years after planting.

Plant Density

Keep it open!

(9) PLANTING PLAN

• If sod is used, then it shall be a non-clumping, deep-rooted species.

Do They Need to Look Good?

Landscape Ecol (2007) 22:959–972 DOI 10.1007/s10980-007-9110-x

PERSPECTIVE

The shared landscape: what does aesthetics have to do with ecology?

Paul H. Gobster · Joan I. Nassauer · Terry C. Daniel · Gary Fry

• If a BMP or landscape looks good, people are more inclined to respect them and take care of them

(11) MULCH

- For tree/shrub bioretention cells only
- Double or triple shredded hardwood mulch (portion of the cell that will be inundated)
- Uniformly placed two to four inches deep.

Might Gravel be OK?

(12) CLEAN-OUT PIPES

- At least one clean-out pipe shall be provided on each underdrain line
- Clean out pipes shall be capped.

Maybe Use Concrete Donuts?

Quick Aside: How do BRC Performance Mature in the Long Term?

2001 – my Ph.D. research

16 Years Later: Studying the Cell Again

Results – Nitrogen

Results – Phosphorus

What's Different?

Vegetation is our long-term friend

NC DEQ Credit Comparisons

• TN and TP are now below assigned values for nutrient reduction calculations from NC DEQ

Period	TN (mg/L)	TP (mg/L)
NC DEQ Credit	1.20	0.12
2002 – 2003	1.23	0.17
2017 – 2018	1.12	0.09

 Not only does bioretention work, it can get even better with time and may even be <u>undervalued</u>

Main Take Home Points

- Keep Sediment Out of Cell
 During Construction!!!
- Do not need to fertilize
 - May Need to Mow or Prune
- Broken Bioretention Can be Restored
- Well Maintained BRC's are like a fine wine
 - Get better with age

Questions?

